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Preface

My aims in writing this book are set out in Chapter 1. It grew, at the
prompting of Dr Abe Yoffe, out of lectures in superconductivity which I
gave to graduate students of the Cavendish Laboratory, and, after its foun-
dation, to students of the Cambridge IRC in Superconductivity. While
writing I have been involved in running the annual IRC Winter School,
and it will be obvious to any who know the school that I have benefited
much from the courses given by my fellow lecturers from the UK super-
conductivity community over several years. The book has been read in
draft by referees in the UK and in the US whose identities I can only guess
at, and parts of it have been read in Cambridge by my colleagues Archie
Campbell, John Cooper, Gil Lonzarich, John Loram, Andy Mackenzie,
David Morgan, Andy Pauza, Brian Pippard and Joe Wheatley; the pro-
duction at Institute of Physics Publishing has been in the capable hands
of Jim Revill, Kathryn Cantley, Peter Binfield, Pamela Whichard and my
patient and thorough desk editor Sara Gwynn: all, known and unknown,
have made very constructive contributions, and I am grateful. My most
important debt is to the teachers, colleagues, students and visitors who,
over many years, have been helping me to get my ideas straight. There are
too many to cite them all by name, but I must mention especially Brian
Pippard, Brian Josephson and David Shoenberg (to whose own book on
superconductivity I hope that mine can prove a useful successor).

During the writing, I have frequently been alarmed by the feeling that
the subject was moving faster than I was. 1 can only hope that parts of
the book are solid enough to stand the test of a little time.

John Waldram
Cambridge March 1996






1 Introduction

1.1 The aims of this book

In this book I aim to provide what most research workers entering the field
for the first time need to know about superconductivity. Though it is not
aimed at professional theoreticians, it contains a good deal of theory, and
plunges into theoretical ideas from the second chapter. I make no apology
for this: superconductivity is a subtle phenomenon whose proper under-
standing involves quite deep, though essentially simple, concepts, which
experimentalists as well as theoreticians need to be familiar with. In partic-
ular, superconductivity is an essentially quantum-mechanical phenomenon.
I have assumed knowledge of a good undergraduate quantum mechanics
course for physicists. I have also assumed a working knowledge of solid-
state physics and the thermal physics associated with it.

But the book is not meant only for physicists. Parts of it are intended
to be accessible to graduate chemists, engineers and materials scientists
(particularly Chapters 3-6, 12-15 and 18), but such readers will probably
either have to take much of Chapter 2 on trust or do some homework on
the quantum mechanics of charged particles in magnetic fields. I hope that
the same chapters will also prove useful in introductory courses intended
for undergraduates. Some suggestions for background reading appear after
the Appendix at the end of the book.

In the remainder of this chapter we shall review briefly the early history
of the subject and explain how the book is laid out.

1.2 The absence of electrical resistance

Superconductivity was discovered at Leiden by Kamerlingh Onnes in 1911
(1], soon after helium had first been liquefied in the same laboratory. What
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he found was that in pure mercury (and the same effect was soon found in
tin, lead and other metals) the electrical resistance disappeared abruptly
below a certain critical temperature, T, and that, to his surprise, delib-
erately increasing the scattering by making the mercury impure did not
affect the disappearance of resistance. In homogeneous samples the loss of
resistance at 7} is remarkably abrupt and complete. One can, for instance,
set up a circulating supercurrent in a superconducting lead ring and ob-
serve no perceptible fall in the current over several months if the ring is
kept below 1.

We now know that the same phenomenon occurs in about half the metals
of the periodic table (Table 1.1). The critical temperatures for the elements
are all low, the highest being for niobium, at 9.25 K, which explains why the
effect was not observed earlier. Since 1986, however, we have known that
in certain complex cuprates the effect occurs at much higher temperatures:
Figure 1.1 shows an example.

Table 1.1. Superconducting transition temperatures of the most common
forms of the elements, in K. Other elements become superconducting un-
der pressure. None of the rare earths is superconducting at atmospheric
pressure.

H He
Li Be B C N O F Ne
0.03
Na Mg Al Si P S Ct A
1.18

K Ca S¢ Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
0.4 5.4 0.851.08

Rb 5r Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 1 Xe
0.819.250.927.8 0.49 0.52 3.4 3.72

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg T1 Pb Bi Po At Rn

6.0 0.134.470.021.700.66 4.15 2.38 7.19

Fr Ra Ac Th Pa U

1.381.4 0.25

If there is no resistance, it seems that the electric field E must be zero in
a superconductor. It was quickly discerned that in consequence, according
to Faraday’s law § E-dl = —9®/8t, the magnetic flux enclosed by any
superconducting loop must be constant. Thus rings of superconductor
carrying a current should trap a fixed amount of flux and, on applying
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Figure 1.1. Resistivity of a sample of T12223 cuprate as a function of temper-
ature (after Loram et al [2]).

a magnetic field to a bulk sample, screening currents must flow on the
surface which prevent the field from entering the bulk. These predictions
were confirmed.

If the magnetic field applied to a bulk sampile is increased, the screening
supercurrents flowing on its surface must also increase. It is not surprising
that, as Kamerlingh Onnes discovered in 1913 [3], there is a limit to this
process: when a magnetic field is applied parallel to a long straight rod
with no demagnetizing coefficient, there is a critical field beyond which the
surface supercurrents can no longer exclude flux from the bulk. For the
type I superconductors first discovered this was the thermodynamic critical
field B.: at this field the supercurrents collapsed completely and the metal
entered the normal state. The thermodynamic critical field rises as the
temperature falls (Figure 1.2).

Wires of superconductor also have a critical current I.. For simple su-
perconductors this is given by Silsbee’s rule: the critical current is equal
to 2mr B, /1o where 7 is the radius of the wire, the current which generates
the critical field at the surface of the wire.

In 1927 Meissner showed [4] that the absence of electric field applied also
to thermoelectric effects: there is no Seebeck voltage in superconductors,
and in fact all the usual thermoelectric effects are absent.

1.3 Thermal properties and the two-fluid model

Measurement of the electronic heat capacity of tin by Keesom and Kok in
1932 [5] showed that in the superconducting state the heat capacity varied
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B/104T
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Figure 1.2. Thermodynamic critical fields of some superconducting elements
as a function of temperature (solid curves). As a useful approximation we may
write Be(T) = Bc(0)(1 - (T/Te)?) (broken curves for Sn and Hg). See also Figure
11.10(a).

roughly as T2, rising above the linear heat capacity of the normal state as
T. was approached, and falling back to the normal value with a vertical
discontinuity at T, with no latent heat at the transition (Figure 3.2).

The heat capacity anomaly at T, was of the sort usually associated with
a higher-order phase transition involving an ordering process, like the ap-
pearance of ferromagnetism below the Curie temperature. This and other
early results suggested that superconductivity is due to the appearance be-
low T, of a group of electrons which have condensed into a new type of
highly ordered quantum state, whose current, for some unknown reason,
could not be removed gradually by the usual scattering mechanisms. The
absence of thermoelectric effects could be explained if the condensed elec-
trons were so highly ordered as to carry no entropy. (Similar ideas were
at that time being discussed to explain the parallel phenomenon of super-
fluid “He, which appeared to contain a superfluid component which had no
viscosity.)

In 1934 Gorter and Casimir [6] therefore introduced a two-fluid model
in which the electrons were divided into a normal fluid, carrying entropy
and subject to scattering, and a superfluid condensate, carrying no entropy
and subject to no scattering. They did not assume that the electrons in
the normal fluid were just like those in a normal metal (nor is this true
in newer microscopic theories); on the contrary, they assumed empirically
that the free energy of the normal fluid was proportional not to the fraction
fa of normal electrons, but to y/f;. This choice was made so as to fit
the electronic heat capacity in the superconducting state, then thought to
be proportional to T3. Their theory predicted that f, = (T/T¢)%, and
this later received some confirmation from early work on the magnetic
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penetration depth in tin (Section 2.5). As we shall see in Chapter 2, the
two-fluid model has some basis in the microscopic theory, but the numerical
predictions of Gorter and Casimir are best regarded as very approximate
fits to the parameters of the true theory, and should only be used with
great caution.

The workers in Leiden also measured the thermal conductivity, and
showed that in pure superconductors it fell rapidly (though not discon-
tinuously) with falling temperature, and eventually at the lowest temper-
atures reached values similar to those of electrical insulators (see Figures
8.2 and 14.2). In very dirty alloys, however, the thermal conductivity rose
above the normal-state value as temperature fell. This behaviour was at
least qualitatively in accord with the two-fluid model: in the clean material
the thermal conduction was normal-electron dominated (the superelectrons
carried no entropy), and fell because the number of normal electrons was
falling; but in very dirty alloys the conductivity was phonon dominated,
and rose because the phonons were being scattered less by the smaller
number of normal electrons.

1.4 Type I and type II superconductors

It became understood in the 1950s that superconductors fall into two
classes, depending on the sign of the surface energy of a superconducting—-
normal interface. Almost all of the pure elementary superconductors stud-
ied before 1940 proved to be of type I, with a positive interface energy.
Type I superconductors show a reversible first-order phase transition with
a latent heat when the applied field reaches B,; and at this particular field
relatively thick normal and superconducting domains running parallel to
the field can coexist, in what is known as the intermediate state.

It had been known since the 1930s that superconducting alloys often
contained trapped magnetic flux, showed a large magnetic hysteresis and
continued to be superconducting at fields much greater than the thermo-
dynamic critical field B, predicted from their heat capacities. For many
years this was put down to ‘dirt effects’—supposed inhomogeneities, with
some sort of network of highly superconducting regions threading a matrix
with much weaker condensation—but in 1951 a new and important phe-
nomenological theory proposed by Ginzburg and Landau made it possible
to calculate the behaviour of superconductors in which the order param-
eter varied strongly from point to point. It gradually became clear that
the alloys were simply type II superconductors, with a negative interface
energy, and that many of their properties were intrinsic. In such materials
finely divided quantized flur vortices or flur lines entered the material over
a range of applied fields below B, and remained stable over a range of
applied fields extending far above B,, in what became known as the mizred
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state. If these flux lines were pinned by lattice defects or other agencies,
the type II superconductor could carry a large supercurrent, greatly ex-
ceeding the Silsbee’s rule criterion, in very high magnetic fields. It was this
which made possible the development during the 1960s and 1970s of useful
high-field superconducting magnets. (See Chapters 4 and 5.)

1.5 Other superconducting materials

Table 1.1 shows the transition temperatures of the elements and Table 1.2
shows some important parameters for typical superconductors of various
types. Work before 1940 was concentrated largely on soft metal supercon-
ductors such as tin, lead and their alloys, but it was subsequently realized
that the hard transition elements such as niobium and vanadium had high
transition temperatures and were easily made type I by alloying, which
allowed them to carry high currents in high fields. NbTi wire, for instance,
is commonly used to build superconducting coils operating in fields up to
about 9 T.

A large number of compounds were found to be superconducting, and
during the 1970s it was discovered that transition metal compounds with
the A15 structure gave strongly type II materials having particularly high
values of T, making possible magnets working up to 20 T. Theoretical
work had suggested that organic molecules with half-filled electron levels
might become superconducting at high temperatures, and this led to a hunt
for superconducting organic molecules, which was successful, though no
materials with exceptionally high T, were found. Very recently interest in
organic superconductors has been rekindled through the discovery of super-
conductors obtained by doping the compound Cgo with alkali metals. (The
molecule of Cgg forms a hollow sphere and crystallizes in a close-packed
lattice with the dopants in the interstices between the spheres.)

In the 1980s great interest developed in heavy-fermion compounds, such
as UPt3, materials with strong magnetic interactions which lead to a large
mass renormalization for the electrons. Some of these materials turned out
to be superconducting and are interesting because both the condensation
mechanism and the nature of the ground state are probably different from
those of the usual superconductors.

Until 1986 it had been widely believed that superconductivity of the
usual type could not exist at temperatures above about 30 K. There was
therefore great excitement when in that year Bednorz and Miiller [7] dis-
covered superconductivity in an La-doped Ba cuprate at 36 K, and the
following year Wu et al [8] found it in a related O-doped Y-Ba cuprate at
93 K. Since then superconductivity has been found in a large number of
similar cuprate materials at temperatures up to 135 K. Since many of these
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Table 1.2. Typical superconductors with important parameters. For
anisotropic materials the penetration depth A and the coherence length &,
are quoted for currents flowing in the highest conductivity direction. 7 is
the Sommerfeld constant (so 4T is the electronic heat capacity per unit
volume in the normal state). Notes: (1) The Bcs coupling parameter NV
is a nominal one obtained from T, and the Debye temperature using the
BCs weak-coupling formula (7.30). (2) These ratios have been computed
using the tunnelling value for A where this is known. (3) These ratios
should be 1.0 for an s-wave Bcs weakly coupled superconductor. (4) This
ratio should be 1.0 for any s-wave Bcs superconductor if the gap parameter
is independent of energy. (5) Measured at 8.5 kbar.

A/T5
Te  Be(0) N0) & NV pxgem SEBGT TRV

K) (T) (om) (nm) (1) (2,3) (2,4) (3)

Non-transition elements

Al Al 1.175 0.010 50 1600 0.18 0.99 0.96 1.12
Sn tetragonal 3.721 0.030 51 230 025 0.99 0.95 1.12
In Al 3.405 0.028 64 440 0.30 1.01 1.02

Pb Al 7.19 0.080 39 83 039 1.21 1.05 1.85

Transition elements

v A2 5.4 0.125 023 097 0.95 1.10
Ta A2 4.47 0.083 025 1.04 1.02 1.10
Nb A2 9.25 0.127 44 40 030 1.04 0.99 1.45

A15 compounds

Nb3zGe Al5 23.0 3
NbsSn Al5 18.2 4
Heavy-fermion compounds

UBej3 0.9

UPt3 0.45 18

Organic compounds

(TMTSF),ClO4 1.2 0.003 500 140
(TMTSF),PFg 1.1(5)

Ceramic cuprates

(La/Sr)CuO, 36 09 100 25
YBayCuzO7_s 93 1.0 130 15 066 13 125 2
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materials are superconducting above 77 K, the boiling point of liquid nitro-
gen, these discoveries were widely expected to lead to a great flowering of
applications, and much effort was poured into superconductivity research,
which continues today. (See Chapters 12-18.)

1.6 The layout of this book

The first two chapters provide a key to much that follows. In this introduc-
tory chapter we have reviewed the early history of the subject and some
of the most significant experimental facts. In Chapter 2 we shall introduce
the basic idea of the effective superfluid wavefunction and show how the
celebrated London equations which describe the electrodynamics of super-
conductors may be derived from it. We shall then describe and explain
the simplest macroscopic quantum phenomena associated with superfluids,
such as the Meissner effect, the magnetic skin depth and the quantization
of trapped flux. Chapter 2 will make no direct reference to the microscopic
theory, but will foreshadow some of the ideas which appear in it.

Chapters 3-6 cover those basic aspects of superconductivity which in-
volve only the thermodynamic and superfluid properties, and can be under-
stood without knowing the microscopic theory. Note that these chapters
include two of the most useful theoretical formulations—the Ginzburg-
Landau theory of the non-uniform superconductor in a magnetic field and
the Josephson picture of supercurrent passing through weak links—both of
which can be presented in purely phenomenological terms. They also in-
clude two topics dependent on these formulations—the mixed state and the
Josephson effects—on which the most important applications of supercon-
ductivity depend. The applications themselves are covered in Chapter 18.

Chapters 12-16 cover the basic properties of the high-temperature
cuprate superconductors. When this book was planned an enormous
amount of work on these materials was under way, and I had expected
that their essential physics would be quickly understood. This has not in
fact happened, so these chapters remain tentative and at some points spec-
ulative. For the same reason I have tried to keep to essentials and to keep
them short.

The remaining chapters, Chapters 7-11, 16 and 17, are concerned with
the full microscopic theory, which almost everyone finds difficult. My aim
in these chapters has been to make the theory more accessible to and us-
able by experimentalists, rather than to provide a treatise which would
satisfy a theoretician. This theory can only usefully be written down using
the formalism of second quantization, and for readers unfamiliar with it a
brief introduction is provided in the Appendix. Chapters 7 and 8 cover
the basic Bardeen—Cooper-Schrieffer (Bcs) theory, which has been so very
successful for conventional superconductors, and Chapters 9-11 extend it
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in various ways. These chapters also cover those experimental phenomena
which are best discussed in the context of microscopic theory, including
the transport and high-frequency properties of the superconducting state,
tunnelling through barriers, the proximity effect (the spreading of super-
conductivity into neighbouring normal metals), normal-superconducting
(Ns) boundary physics and non-equilibrium effects. Chapter 16 compares
the cuprates with Bcs theory. Chapter 17 provides a brief account of vari-
ous alternative theories for the cuprate superconductors, on which there is
yet no clear consensus.
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2 Thesuperfluid

In this chapter we shall examine the characteristic superfluid properties of
superconductors, as phenomena. The microscopic theory which underlies
these phenomena appears in Chapters 7-11.

2.1 The two-fluid model in Bcs theory

The first successful description of superconductors was the two-fluid model,
developed by Gorter and Casimir in the 1930s [1]. According to the two-
fluid model, a superconductor behaves as though it contains electrons of two
different types, the normal electrons, which behave at least approximately
like electrons in normal metals, and the superelectrons, which have striking
and unusual properties. Both types of electron can carry current: the
normal electrons with resistance and the superelectrons without resistance.
The normal electrons can carry heat, but the superfluid is supposed to be
perfectly ordered, has no entropy and can carry no heat. As we pass below
the critical temperature T, the density of superfluid is supposed to rise
from zero, while the density of normal fluid falls. Since the normal fluid
and superfluid conduct in parallel, the d.c. electrical conductivity is infinite
below T, but the thermal conductivity falls to zero at T' = 0.

This simple two-fluid description survives to some extent in the modern
microscopic theory first developed by Bcs. We shall examine this theory in
detail in Chapters 7 and 8, but it may be helpful to give a brief descrip-
tion of some of its features here. The theory is based on the idea that in
the superconducting metals there is, surprisingly, a weak attractive force
acting between electrons near the Fermi level. At temperatures below T
this force creates a new type of quantum state, somewhat different from the
Fermi sea of a normal metal (Figure 2.1). As a rough description, which we
shall refine as we proceed, we may say that below T the system behaves as
though a small proportion of the electrons near the Fermi energy had been
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bound together in pairs, like molecules. The internal motion of the pair
is supposed to have no orbital angular momentum (it is an s state), and
consequently the two spins must be in a singlet antiparallel spin state to
satisfy the requirements of exchange symmetry. However, the pair binding
differs in some ways from the ordinary binding of an isolated pair of parti-
cles by an attractive force. In conventional superconductors at T' = 0 the
orbital state of the pair has a radius & typically of order 10~¢ m, so large
that the individual pairs overlap strongly in space, and the binding turns
out to be cooperative—the binding energy 2A of any one pair depends on
how many other pairs have condensed, and, in addition, the external cen-
tre of mass motions of all the pairs are coupled together so that each pair
is in exactly the same state. (This is possible because a pair of fermions
constitutes a boson: we sometimes say that the pairs have undergone a
Bose condensation—many pairs condensed into the same quantum state,
like the condensation which occurs for purely statistical reasons in an ideal
Bose gas at low temperatures.) As we shall see, it is the presence of the
pairs which gives the system its superfluid properties. For instance, if we
add two electrons to the superfluid as a bound pair, this has no effect upon
the entropy, because the number of ways of arranging the system has not
changed: for any number of pairs the pair state is unique. It follows (by
minimizing the free energy for the superfluid in contact with an external
electron reservoir in which the electrons have electrochemical potential 1)
that in thermal equilibrium two electrons entering the superconductor as
a bound pair must always enter with energy 2u. In fact, the superfluid
behaves exactly like that otherwise mythical device of statistical thermo-
dynamics the ideal particle reservoir, in which all the particles have the
same energy u and no entropy.

The new paired ground state at T = 0, as we shall see in more detail
later, is not a state with definite occupation of particular k states, but it
may be Fourier analysed into such states, and when this is done we find
that the average k-state occupation differs only slightly from that in the
Fermi sea at T = 0: instead of the occupation changing sharply from 1 to 0
at the Fermi surface, the probability of occupation is slightly blurred. (This
blurring is a property of the paired ground state itself and has nothing to
do with thermal excitation.)

For an ordinary metal the Fermi sea ground state has electron and hole
excitations which have definite momentum %k and positive excitation en-
ergy €r. We create an electron excitation by taking an electron from the
imaginary reservoir at energy p and placing it in a momentum state just
outside the Fermi surface, and we create a hole excitation by taking an
electron from a momentum state just inside the Fermi surface and plac-
ing it in the reservoir. (In superconductivity theory the concept of a ‘hole
state’ refers to an empty state below the Fermi level, and not, as in semi-
conductor theory, to an empty state at the top of the valence band.) In a
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Figure 2.1. BCS theory as it applies to the two-fluid model. (a) The paired
BCS ground state is not very different from the Fermi sea, but has a slightly
fuzzy Fermi surface. It still has single-particle excitations which are electron-like
outside and hole-like inside the Fermi surface. (b) In a superconductor the energy
E}. required to bring an excitation of momentum hk from a reservoir of chemical
potential p into the system is not less than A. (c¢) The corresponding density
of states for excitations g(F) has a sharp cusp at £ = A, with an energy gap
for E < A. But it costs no energy to bring electrons from the reservoir into
superfluid pair states.

normal metal the energy needed to create such excitations can be made as
small as we like by choosing k near enough to the Fermi surface. It turns
out that the paired state, like the Fermi sea, still has excitations which are
electron-like for momenta just outside the Fermi surface and hole-like for
momenta just inside. These single-particle excitations are still fermions,
with a Fermi distribution in energy at temperature T', and they give the
system its normal fluid properties, but they differ from ordinary electron
and hole excitations in several respects. For instance, because it takes a
finite energy 2A to break up one of the condensate pairs when we create
two electron-like excitations, the excitation energy Ey cannot be less than
A. The way in which ¢ and Ejy vary with k near the Fermi surface is
shown in Figure 2.1(b), and we see that in the superconducting state an
energy gap for excitations appears at the Fermi level. It follows that in
equilibrium the number of normal excitations present will decrease as the
temperature is lowered, which is why the effective density of the normal
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fluid falls to zero at T' = 0.

Note that we have two different ways of adding electrons to a supercon-
ductor. As we have seen, we may add electrons to the superfluid condensate
as bound pairs of energy 2u, without affecting the entropy. We may also
add a single electron to the normal fluid by creating an electron-like exci-
tation, corresponding to adding an electron to the normal fluid. Such an
electron may enter many different single-particle states with various ener-
gies. In general, as in a normal metal, this process will change the number
of ways of arranging the system: an electron added to the normal fluid
therefore brings entropy with it.

It is important not to imagine that we have two completely indepen-
dent interpenetrating fluids, because the properties of the single-particle
excitations and the pairs interact with each other. For instance, as we
have just noted, the energy (and also, as it turns out, the velocity and
other properties) of the single-particle excitations depends on the binding
energy of the pairs, while the binding energy of the pairs will depend on
what single-particle excitations are present. Moreover, as we shall see in
the next section, the quantities described as the normal current and the
supercurrent cannot be ascribed in any simple way to the single-particle
excitations and the pairs acting alone. There are, however, some situations
in which a simple two-fluid description is valid: we shall meet an example
in Section 16.6.

2.2 The supercurrent and the superfluid wavefunction

We saw in Section 2.1 that the pairs are energetically coupled together so
that each pair is in the same internal orbital state and each pair has the
same centre of mass motion. This centre of mass motion may be described
by a centre of mass wavefunction ¥ (r) which is the same for all the pairs,
and is known as the superfluid wavefunction. (We shall give a more formal
definition later, in Section 9.3.) For instance, a ¥ of the form exp(is- r)
corresponds to a state in which every pair has the same momentum hs (or
pair velocity vs = hs/2m.).

Because of the cooperative interaction, the pair momentum is not easily
reduced, by elastic scattering for instance. As we have seen, changing the
velocity of a single pair with respect to all the others would destroy its
cooperative binding energy. It is equivalent to breaking up the pair com-
pletely, and requires energy of at least 2A. At T = 0 , if the pair velocity
is not too big, this energy will be larger than the kinetic energy of the
pair, so the process cannot occur (see Section 4.7). At finite temperatures,
inelastic processes will be continually breaking up pairs and forming them
by recombination, but such processes also cannot change the common pair
momentum, because each pair can only condense if it has a momentum
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T=0 T>0 h

Figure 2.2. The supercurrent for finite vs. The figures on the left show
momentum-space occupations. At T = 0 the supercurrent corresponds to giving
velocity vs to all the electrons, but for T > 0 at the same value of U5 there is a
backflow in the one-particle excitations, so that Js and hence the effective density
of superelectrons ns(7T") are both reduced.

which matches that of the other pairs already condensed. It will turn out
(Section 5.7) that there are some special energetically allowed processes
which do change the momenta of all the pairs at once, but they involve
flux-line nucleation and are usually exceedingly improbable. Thus the pair
momentum has a strong tendency to persist. This suggests that the system
may show a supercurrent—electric current which flows persistently, without
resistance.

We now come to a subtle but important point. The supercurrent is not
just the current carried by the relatively small number of bound pairs near
the Fermi level acting alone. It is, rather, the total non-decaying current
associated with a given pair momentum. Suppose, for instance, that we
take the paired ground state and set it in motion by giving the same small
velocity v to every electron (Figure 2.2). This will, of course, automatically
give the pairs the same velocity. At T = O this state is stable: according to
the Fermi distribution there will be no single-particle excitations present
in equilibrium, because they all have positive excitation energy. Thus, so
far as current-carrying ability is concerned, at 7' = 0 the system behaves
as though all the electrons were superfluid. If we write the supercurrent
density as

Js = —ngevs (2.1)

then we must identify the effective number density of superelectrons ng as
the total number density of electrons n.

At finite temperatures, however, the situation changes. As we just noted,
pairs will be continually breaking up and reforming, but without changing
the common pair momentum. How will the single-particle excitations come
to equilibrium with the pairs? Keeping the pair momentum fixed means
that we keep the fuzzy Fermi surface shifted through a given momentum
from its equilibrium position (Figure 2.2). In this situation, the equilibrium
Fermi distribution of excitations will have more electrons on the left of
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the Fermi surface than on the right, because the excitation energies are
lower there. Thus the equilibrium distribution of excitations, to which the
system decays under the influence of phonon and impurity scattering, has
an excitation backflow to the left. Unlike the situation in a normal metal,
however, this backflow only partly cancels the effect of the original shift,
leaving a net current to the right. This residual current is in equilibrium
under the influence of scattering and does not decay, and we must therefore
regard the whole of it, including the backflow contribution, as supercurrent.
However, the backflow contribution increases as T rises. For this reason,
the effective density ns of superelectrons to be used in (2.1) falls as the
temperature rises, and reaches zero at T,.

The picture just described holds so long as the electronic mean free
path ¢ is much larger than the size &y of the bound pairs. Not surprisingly,
when the scattering is stronger than this the whole picture of the pair state
has to change. It turns out that it is still possible to define ¥, with the
supercurrent related to it in the usual way. But, as we shall see later, in
this strong scattering limit the effective density of superelectrons is reduced
by a further factor of £/€y (Section 10.9).

Evidently the effective density of superelectrons ns which appears in the
superfluid transport equation (2.1) has a complicated dependence on T and
£ which does not correspond at all to the density of the pairs themselves,
which is much smaller. This raises the question of how the superfluid
wavefunction ¥(r) should be normalized. At first sight it seems natural
to make ¥ equal to the actual pair amplitude. It is, however, often more
convenient to make ¥*¥ equal to the effective density of pairs n, = %ns,
and this is the convention usually adopted for the superfluid wavefunction
¥. With this convention the supercurrent density is —2e¥@¥*v,, or, more
generally,

_ leh
h 2me

Js (T*V¥ —OVI*). (2.2)
This convention is convenient, because it makes the supercurrent have the
familiar quantum-mechanical form for a current density, but it is important
to remember that the amplitude of ¥, as here defined, has been fixed in
a rather artificial way and is only indirectly related to the actual pair
amplitude.

2.3 Introduction of the magnetic vector potential

Magnetic fields and the magnetic vector potential play a large role in the
physics of superconductors and we need to be clear about our handling
of them. As usual we shall use the electrostatic potential ¢(r) and the
magnetic vector potential A(r) to describe the electric and magnetic fields



16 Superconductivity

Figure 2.3. Idealized behaviour of the electric potential energy —e¢, the Fermi
energy ep and the electrochemical potential ;1 at a contact between two metals.
Notice that it is p which is constant in equilibrium.

[2] with

E=-0A/0t-V¢ (2.3)
B=VAA. (2.4)

(These potentials are not uniquely defined, but all the equations of this
section are gauge invariant—they hold for all possible potential descrip-
tions: see Section 2.7.) In considering electron currents in metals we have
to remember the principle of thermodynamics which states that it is the
gradient of the electrochemical potential p rather than the gradient of ¢
which determines how the electrons flow: indeed an ordinary voltmeter ac-
tually measures differences in p rather than ¢ [3]. (In a free-electron model
we may write p(r) as —e@(r) + ep(r)—see Figure 2.3.) The driving field for
electrons is therefore not the real electric field E, but the effective electric
field, given by

E.g = -0A/0t + Vy/e. (2.5)

We also need to recall how quantum theory is written in the presence of
a magnetic field [4]. For a particle of mass m and charge Q the operator
—ihV is the operator for the canonical momentum p = mv + QA, and
not the usual Newtonian momentum mwv [5]. This has some important
consequences. For instance, the Schrodinger equation for an electron (with
mass m,, charge —e and canonical momentum mev — eA) becomes

(—ihV 4+ eA)*¥ — ep¥ = EV. (2.6)

Me

(Notice that the first term still represents the Newtonian kinetic energy
3mev?.) Expression (2.2) for the supercurrent density —2e%¥* v, now takes
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the form . 02
Jy = (0P - over) - “E gy 4. (2.7)

2me m,

For applications later in this chapter it will be convenient to rewrite this
expression in a simpler form. If we write ¥ in terms of its amplitude and
phase as /71, ¢, (2.7) reduces to

AT, = — (ﬁve + A)
Ze (2.8)

where we have introduced the London parameter A = m./nge?. Here AJ,
is —mevs/e written in terms of J;, and AV is the local canonical pair
momentum. We also know that the local pair energy is 2u. Since the rate
of change of phase of the pair wavefunction is related in the usual way to
the local pair energy, we have

00
h— = —2pu.

ot (2.9)

As we shall see shortly, equations (2.8) and (2.9} contain much of the
essential physics of the superfluid.

2.4 The first London equation and perfect conductivity
If we take the time derivative of (2.8) we find with the help of (2.9) that

o(AJ)
ot

= -~0A/0t+ Vyu/e

or

ot (2.10)

where Eqg is the effective driving field for electrons in the superconductor
introduced in Section 2.3. This result is known as the first London equa-
tion. (The correct electrodynamic equations for superconductors were first
written down by Fritz and Heinz London in a celebrated paper of 1935
[6], and Fritz London shortly afterwards showed their connection with an
equation of the form (2.7) [7], though the idea that pairs were involved did
not emerge until much later.) Equation (2.10) is clearly an acceleration
equation: it may be rewritten as 8J/8t = (nge?/m)E.q, which is what
one would expect for the free acceleration of superelectrons in an electric
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field. It implies that after a short pulse of electric field the system will be
left with a supercurrent which will not decay, and this, of course, is the
property of superconductivity.

The above analysis is not a proof from first principles of the property
of superconductivity. We noted earlier that we can only expect to see
superconductivity if the decay of pair momentum by scattering or other
processes is inhibited for some reason. The same assumption is built into
our derivation. In using equation (2.9) in the presence of a supercurrent
we tacitly assumed that the superelectrons remain in thermal equilibrium
with the particle reservoir and have energy p, even when in motion. This
assumption is only valid if the superelectrons remain in a unique state
which is incapable of decaying. We still have to look to microscopic theory
to see why this happens, and shall return to this question in Section 9.4.
The first London equation is valuable not as a ‘proof’ of the property of
superconductivity but as a description of how the supercurrent accelerates
when an electric field is present.

The property of superconductivity can be exceedingly useful, most obvi-
ously, perhaps, in building powerful electromagnets which absorb no power
(Section 18.14) and in making microprocessor elements which dissipate no
heat (Section 18.8), but it can also be helpful to the low-temperature ex-
perimentalist. An ordinary solder-coated copper wire is superconducting
at liquid helium temperatures and can be very useful in the leads of a po-
tentiometer measuring tiny voltages of order 10~!® V, for instance. As we
shall see later, such a wire may be driven normal by quite modest magnetic
fields, but wires with superconducting cores having critical fields of 10 T
or more are commercially available, from which one can easily wind small
magnet coils and flux transformers (Section 18.5).

2.5 The second London equation and perfect diamagnetism

If we take the curl of (2.8) we find, since the curl of a gradient is always
zero, that

V A (AJ) = —B.

(2.11)

This is the second London equation. It is in some respects the analogue for
the supercurrent of Ohm’s law and shows how a steady supercurrent is a
function of the magnetic rather than the electric field.

Using the second London equation, we may show that an applied mag-
netic field should only penetrate a very short distance into a superconduc-
tor. We first write down Ampere’s rule as

V A B = pio(Js + Jres) (2.12)
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Figure 2.4. The magnetic field B and current density Js both decay expo-
nentially with distance z into a bulk superconductor, with characteristic decay
length Ar, the London penetration depth.

where J,.s represents any residual current density which may be present
in addition to the supercurrent (such as a thermoelectric current in the
normal electrons, for instance). Then on taking the curl of (2.12) we find
that

V A(V AB) = pupV A (Js + Jres)

or

V2B = %1913 — 10V A Tres (2.13)

assuming that A is independent of position, since VA (V AB)=
V(V-B)-V?B and V- B = 0. In almost all practical situations we
have either J,s = 0 or V A Jios = 0 (for an exception see Section 2.9) and
thus

V’B = 52-
)\L

(2.14)

where AL is the London penetration depth (A/po)? = (me/ponse?)?. This
result has the form of a screening equation. For instance, near a plane
surface the magnetic field and the supercurrent density both decay expo-
nentially with depth z as e~?/* (Figure 2.4). The characteristic decay
length Ap, is small—of order 107 m at 7" = 0 in most superconductors,
but becoming infinite at T, where n; tends to zero. (We shall discuss
measurements of the penetration depth later, in Section 10.10.)

It follows from the screening equation that any applied magnetic field
should be completely excluded from the bulk of a superconductor by strong
screening currents flowing in the very thin skin depth region near the free
surface. This is the property of perfect diamagnetism and is what is ob-
served for well-annealed samples of type I superconductors such as tin or
lead. The property is sometimes described by saying that a bulk type I
superconductor is a magnetic material with permeability p = 0 and sus-
ceptibility xm = —1. Note that our derivation of this result was based on
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Figure 2.5. A small sample of ceramic superconductor at liquid nitrogen tem-
perature, levitated over a ferromagnet. There is a repulsion between the magnet
and the induced screening currents flowing in the superconductor. (Reproduced
by permission of the Cavendish Laboratory, University of Cambridge.)

(2.7), and hence on the notion that the supercurrent can be described in
terms of the superfluid wavefunction ¥(r). Again it is necessary to appeal
to microscopic theory if we wish to understand why this is so.

The property of perfect diamagnetism can be very useful. It may be
used, for instance, to levitate small objects, providing an almost completely
frictionless suspension (Figure 2.5), and at liquid helium temperatures a
simple sheath of superconducting lead foil provides an almost perfect shield
against all electric and magnetic fields.

It is important to notice that the two London equations, though closely
related, are independent, and neither can be deduced from the other. For
instance, if we try to obtain (2.10) by first taking the time derivative of
(2.11) and then integrating in space, we cannot fix the term in V on the
right-hand side of (2.10) with certainty. Thus, although it is obvious that
the screening currents which flow on the surface of a superconductor in a
magnetic field must be resistanceless because they do not decay with time,
we cannot prove that the effective electric field inside the superconductor
is zero using the second London equation alone.

Conversely, it is true that we can get the time derivative of (2.11), but
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not (2.11) itself, by taking the curl of (2.10). Using the time derivative of
Ampére’s rule, we can also get the time derivative of (2.14). By integrating
with respect to time we may deduce that changesin B are screened from the
butk of the superconductor. Equation (2.14), on the other hand, is stronger:
it implies that the field B itself is zero deep inside a superconductor.

However, not all superconductors show this ideal screening behaviour,
as we shall now see.

2.6 The Meissner effect, flux trapping and flux quantization

It is interesting to ask whether magnetic flux can ever be trapped inside a
superconductor. (For a material which simply becomes a perfect conductor
in the sense that the carriers have inertia but negligible damping, we expect
to find trapped magnetic fields. This is what happens in a plasma, for in-
stance, and it was originally expected that superconductors would behave
in the same way.) The screening equation (2.14) suggests that there should
be no magnetic flux deep inside a wholly superconducting material-—there
ought to be no flux trapped in the superconductor itself. It follows that
any field originally present should be expelled when the material becomes
superconducting. This is indeed what happens when carefully annealed
samples of type I superconductors are made superconducting by cooling or
by reducing the magnetic field below the critical field (Figure 2.6(a)). The
effect was first observed by Meissner and Ochsenfeld in 1933 [8] and is usu-
ally referred to as the Meissner effect. We shall discuss its thermodynamic
implications in Section 3.2.

However, we must not conclude too hastily that superconductors cannot
trap flux. Suppose we have a piece of type I superconductor in the form of
aring (Figure 2.6(b)). From the first London equation (2.10) we know that
the effective electric field E.¢ must be zero deep inside the body of the ring,
because 3J/8t = 0 there. (This applies even if the supercurrents flowing
in the ring are changing, because the screening equation (2.14) shows that
such currents only flow within the skin depth.) From (2.5) we can deduce
that Faraday’s law holds in the form

do
jéEeﬂ dl= - (2.15)

where @ is the magnetic flux linked with the contour. If the contour is
taken around the ring deep inside the material where E.g4 = 0 we deduce
that the flux @ passing through the ring is conserved. Thus any flux pass-
ing through a ring of superconductor is indeed trapped: the supercurrents
in the ring will adjust themsleves so that the flux passing through the ring
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Figure 2.6. Flux expulsion and flux trapping. (a) The Meissner effect, the
ezpulsion of magnetic flux from a well annealed type I superconductor as it enters
the superconducting state, either by cooling or by reducing the field below the
critical field. (b) Flux trapped in a ring of superconductor. (c) Flux trapped in
a normal region of a superconducting shield either because it was pinned there
by defects or because the superconductor was cooled from the outside inwards
rather than from the bottom upwards.

never changes. (Experimenters need to remember that at helium temper-
atures rings of ordinary soft solder, which are common features of metal
apparatus, will be superconducting and may trap magnetic flux.)

The same sort of thing may happen with a simply connected piece of
superconductor if part of it has been driven normal for some reason. For
instance, if a screening lead sheath is cooled from the sides instead of
from the bottom, the superconducting region when it first forms may be
in the form of a ring and may trap some flux (Figure 2.6(c)). As the
superconductor cools, the flux may be compressed into a small region at
the bottom of the sheath, where it may provide a field large enough to
hold a small region of the sheath normal. If this happens, the sheath will
continue to trap flux instead of shielding it. Indeed, behaviour of this sort
is common in practice and difficult to avoid.
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Even more complex phenomena occur in type II superconductors. As we
shall see in Chapters 4 and 5, these are materials which may be threaded
by flux lines, fine threads of flux along which the superconductor has an
effectively normal core. In type Il superconductors particularly, flux is
likely to be pinned inside the material and unable to flow to the surface.

When flux is trapped by a superconductor it is frequently, and inter-
estingly, not only conserved but also quantized. Consider what happens
if we take the line integral of equation (2.8) around some loop which
lies wholly inside a superconductor (Figure 2.7). The line integral of
-V = (2e/h)(A + AJs) is simply the total decrease in § as we move
once around the loop, and this must be a multiple of 27 since the phase at
the starting point must be well defined. Thus

f(A + AJg) -dl= 2—he-27rn (2.16)

where n is an integer. When we are dealing with bulk superconductors and
the path of integration lies deep inside the superconductor where J; = 0,
the left-hand side of (2.16) reduces to ¢ A - dl, which is just the flux &
passing upwards through the loop. It follows that this flux is quantized as

where n is an integer and @g is the flur quantum defined as

By = L.

2e (2.18)

(Note the factor of two in the definition of the flux quantum, which arises
because we are dealing with a wavefunction for pairs. @y has the value
2 x 107'® Wb.) If the superconductor is simply connected and contains
no singularities in ¥ then we see by shrinking the loop to a point that we
must have n = 0, but if the superconductor is in the form of a ring, or if
it contains normal regions or flux line singularities (Section 4.10), then n
may be non-zero.

Notice, however, that the quantization argument holds only if we can find
a loop on which J; = 0. Cases where this is not possible include rings thin
compared to the penetration depth, rings in which there is thermocouple
action (Section 2.8) and rotating rings (Section 2.9). In all of these cases
the quantized quantity is the left-hand side of {2.16), which is known as the
fluzoid, and the flux itself is not quantized. The flux is also not quantized
for rings containing Josephson junctions (Section 6.5), for a similar reason:
we cannot write — V8 = (2¢/h) A in the neighbourhood of the junction.

The quantization of flux in a ring was first detected by Deaver and
Fairbank (9] and also by Doll and Nébauer [10], both in 1961. They used a
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Figure 2.7. Quantization of flux in a multiply connected ring of superconductor.

cylinder of superconducting film evaporated onto a thin fibre. The fibre was
cooled in a small parallel magnetic field, which was subsequently removed.
The release of flux on warming by the fibre was measured ballistically. More
recently, the experimental confirmation by Gough et al [11] that the flux
quantum in high-T, superconductors has the same magnitude h/2e shows
that, whatever the detailed microscopic theory is in this case, it must still
involve a pair wavefunction in some sense. Their experiment was done
using a SQUID magnetometer (see Chapter 18) to measure the flux trapped
by a ring of sintered material a few millimetres across.

2.7 Gauge transformations and the London gauge

We come now to a rather technical point, but one which proves to be par-
ticularly significant for superconductors. In considering the description of
the electric and magnetic fields set out in Section 2.3, it is helpful to re-
member that though the potentials and the wavefunction describe physical
variables, they are not themselves observable. In fact if we simultaneously
transform A, ¢, p and ¥ as follows

A—- A+ Vy (2.19)

b — ¢ — Oy /0t (2.20)

©— p+edx /ot (2.21)
2e

N B 2.22

60— 0 - (2.22)

where 6 is the phase of ¥ and x(rt) is an arbitrary differentiable and
single-valued function of space and time, we find that the transformation is
purely formal and has no effect on any observable quantities. For instance,
it is easy to see that it has no effect on the fields E, E.g and B, or on
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the value of J;. Such a transformation is called a gauge transformation.
Observables which do not change under a gauge transformation are said to
be gauge invariant. Unobservable quantities such as A, ¢, 4 and § which
change in a defined way under a gauge transformation are said to be gauge
covariant.

Up to this point we have been careful to keep all the equations in this
book gauge invariant—they hold in all gauges—but sometimes it is conve-
nient to work in a particular gauge. For instance, if the superconducting
wavefunction is single valued (which will be true so long as the supercon-
ductor is simply connected and contains no internal flux) it is convenient
to choose x(r,t) so that § always remains zero everywhere. This might be
called the rigid gauge, because the superfluid wavefunction becomes rigid
in the sense that the phase of ¥ never changes and the canonical momen-
tum p = AV remains zero when we switch on an applied magnetic field
or introduce transport supercurrent. This choice is natural and convenient
because it follows from (2.9) that we have indirectly defined p to be zero
everywhere, which means that we may think of all the superelectrons as
being in equilibrium with a notional particle reservoir whose energy we
have chosen as our zero of energy. Using (2.8) we find that in the rigid
gauge the second London equation may be written in the form

AJ, = —A. (2.23)

This is equivalent to writing mev, as eA: in the rigid gauge the Newtonian
momentum of the electrons is represented by the vector potential term
alone.

We very frequently also know that V - J; = 0. (This will be true so
long as normal current is not being converted into supercurrent, as it may
be, for instance, at an Ns interface or when we have position-dependent
thermoelectric normal currents.) It then follows from (2.23) that

V-A=0 and Ay = Adgy. (2.24)

where the second relation is a boundary condition: A, is the component
of A normal to the boundary and J, is the supercurrent density normal
to the boundary, if any. A vector potential which satisfies these conditions
is said to be in the London gauge. When combined with the requirement
V A A = B these conditions of the London gauge fix the value of A for
a given field inside the superconductor unambiguously. Moreover, in the
London gauge it is easy to show that A obeys the equation V?A = 0 out-
side the superconductor and the screening equation V2A = A/A? inside
the superconductor. By solving these two equations, subject to the London
conditions and appropriate boundary conditions at infinity, one can com-
pute the pattern of fields and supercurrents for superconductors subject to
given applied fields or transport currents.
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We cannot always use the London gauge in this way, however. In multi-
ply connected superconductors or in type II materials containing flux lines,
the phase is not single valued, so we cannot find a gauge transformation
which makes the phase the same everywhere, and when normal current is
being converted into supercurrent the London gauge no longer corresponds
to the rigid gauge.

It is instructive to use the London gauge to discuss the relation be-
tween perfect diamagnetism in superconductors and the well-known dia-
magnetism of atoms. When an atom is placed in a uniform magnetic field
B, it is well known that the electron assembly undergoes Larmor preces-
sion with angular velocity eB/2m,., and the corresponding rotation of the
assembly gives the atom a dicmagnetic moment. In quantum theory we
account for this as follows. The uniform field applied to the atom may
be described using a vector potential of the form A = %B A 7, which is
in the London gauge. In a weak field, this perturbation has a negligi-
ble effect on the wavefunction; as in the superconductor we may say that
the wavefunction is 7igid in this gauge. The formal angular momentum
quantum numbers are not changed and the local canonical momentum p is
not altered. However, the interpretation of the wavefunction does change.
Because p = m.v — eA, the electrons now all have an extra local veloc-
ity eA/me, as in the superconductor. In the atom this velocity has the
form (eB/2m.) A r, the expected precession velocity. The only important
difference in the case of an object as small as an atom is that the diamag-
netic current is too weak to screen the applied magnetic field appreciably,
whereas in the superconductor, as we have seen, it is strong enough to re-
strict the field to the region within a penetration depth Ap, of the surface.

2.8 Thermoelectric effects

When a temperature gradient exists in a normal metal, processes such as
electron—phonon collisions drive the electrons along the temperature gradi-
ent: the metal behaves as though it contained a driving electromotive force
(EMF), the thermal Seebeck EmF. In an isolated sample the electrons flow
until a gradient of electrochemical potential is set up which cancels out the
effect of the EMF, and dynamic equilibrium is established (Figure 2.8(a)). If
two different metals are connected in a loop, the Seebeck EMF correspond-
ing to a given temperature difference may not be the same in each, so in
general there will be a net EMF acting in the loop and a thermoelectric
current will circulate (Figure 2.8(c)).

In a superconductor something different happens. We cannot set up
a gradient of u, and the thermoelectric forces therefore drive a continu-
ous normal thermocurrent along the sample. We may use the analysis of
Section 2.5 in this situation, identifying Jyes as the normal thermoelectric





